120 research outputs found

    Cosmic-Ray Induced Diffuse Emissions from the Milky Way and Local Group Galaxies

    Full text link
    Cosmic rays fill up the entire volume of galaxies, providing an important source of heating and ionisation of the interstellar medium, and may play a significant role in the regulation of star formation and galactic evolution. Diffuse emissions from radio to high-energy gamma rays (> 100 MeV) arising from various interactions between cosmic rays and the interstellar medium, interstellar radiation field, and magnetic field, are currently the best way to trace the intensities and spectra of cosmic rays in the Milky Way and other galaxies. In this contribution, I describe our recent work to model the full spectral energy distribution of galaxies like the Milky Way from radio to gamma-ray energies. The application to other galaxies, in particular the Magellanic Clouds and M31 that are detected in high-energy gamma-rays by the Fermi-LAT, is also discussed.Comment: Contribution to "The Spectral Energy Distribution of Galaxies" Proceedings IAU Symposium No. 284, 2011, eds. R.J. Tuffs & C.C.Popescu. 4 pages with 4 figure

    Inverse Compton scattering on solar photons, heliospheric modulation, and neutrino astrophysics

    Get PDF
    We study the inverse Compton scattering of solar photons by Galactic cosmic-ray electrons. We show that the gamma-ray emission from this process is substantial with the maximum flux in the direction of the Sun; the angular distribution of the emission is broad. This previously-neglected foreground should be taken into account in studies of the diffuse Galactic and extragalactic gamma-ray emission. Furthermore, observations by GLAST can be used to monitor the heliosphere and determine the electron spectrum as a function of position from distances as large as Saturn's orbit to close proximity of the Sun, thus enabling unique studies of solar modulation. This paves the way for the determination of other Galactic cosmic-ray species, primarily protons, near the solar surface which will lead to accurate predictions of gamma rays from pp-interactions in the solar atmosphere. These albedo gamma rays will be observable by GLAST, allowing the study of deep atmospheric layers, magnetic field(s), and cosmic-ray cascade development. The latter is necessary to calculate the neutrino flux from pp-interactions at higher energies (>1 TeV). Although this flux is small, it is a "guaranteed flux" in contrast to other astrophysical sources of neutrinos, and may be detectable by km^3 neutrino telescopes of the near future, such as IceCube. Since the solar core is opaque for very high-energy neutrinos, directly studying the mass distribution of the solar core may thus be possible.Comment: 4 pages, 4 figures, emulateapj.cls, final version; published in ApJ Letters, added an erratum; conclusions unchange

    Dark Matter Searches with Astroparticle Data

    Full text link
    The existence of dark matter (DM) was first noticed by Zwicky in the 1930s, but its nature remains one of the great unsolved problems of physics. A variety of observations indicate that it is non-baryonic and non-relativistic. One of the preferred candidates for non-baryonic DM is a weakly interacting massive particle (WIMP) that in most models is stable. WIMP self-annihilation can produce cosmic rays, gamma rays, and other particles with signatures that may be detectable. Hints of anomalous cosmic-ray spectra found by recent experiments, such as PAMELA, have motivated interesting interpretations in terms of DM annihilation and/or decay. However, these signatures also have standard astrophysical interpretations, so additional evidence is needed in order to make a case for detection of DM annihilation or decay. Searches by the Fermi Large Area Telescope for gamma-ray signals from clumps, nearby dwarf spheroidal galaxies, and galaxy clusters have also been performed, along with measurements of the diffuse Galactic and extragalactic gamma-ray emission. In addition, imaging atmospheric Cherenkov telescopes like HESS, MAGIC, and VERITAS have reported on searches for gamma-ray emission from dwarf galaxies. In this review, we examine the status of searches for particle DM by these instruments and discuss the interpretations and resulting DM limits.Comment: Solicited review article to appear in Annual Reviews of Astronomy and Astrophysics. 52 pages, 10 figures (higher resolution figures will appear in the journal article

    The Gamma-ray Albedo of the Moon

    Get PDF
    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalisation; this makes it a useful "standard candle" for gamma-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo gamma rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.Comment: 6 pages, 4 figures, emulateapj.cls; to appear in the Astrophysical Journa

    Developing the Galactic diffuse emission model for the GLAST Large Area Telescope

    Get PDF
    Diffuse emission is produced in energetic cosmic ray (CR) interactions, mainly protons and electrons, with the interstellar gas and radiation field and contains the information about particle spectra in distant regions of the Galaxy. It may also contain information about exotic processes such as dark matter annihilation, black hole evaporation etc. A model of the diffuse emission is important for determination of the source positions and spectra. Calculation of the Galactic diffuse continuum gamma-ray emission requires a model for CR propagation as the first step. Such a model is based on theory of particle transport in the interstellar medium as well as on many kinds of data provided by different experiments in Astrophysics and Particle and Nuclear Physics. Such data include: secondary particle and isotopic production cross sections, total interaction nuclear cross sections and lifetimes of radioactive species, gas mass calibrations and gas distribution in the Galaxy (H_2, H I, H II), interstellar radiation field, CR source distribution and particle spectra at the sources, magnetic field, energy losses, gamma-ray and synchrotron production mechanisms, and many other issues. We are continuously improving the GALPROP model and the code to keep up with a flow of new data. Improvement in any field may affect the Galactic diffuse continuum gamma-ray emission model used as a background model by the GLAST LAT instrument. Here we report about the latest improvements of the GALPROP and the diffuse emission model.Comment: 2 pages, 2 figures; to appear in the Proc. of the First Int. GLAST Symp. (Stanford, Feb. 5-8, 2007), eds. S.Ritz, P.F.Michelson, and C.Meegan, AIP Conf. Pro
    • …
    corecore